SUMMARY SHEET 11 Hydrogen Sulfide

			Run #1	Run #2	Run #3	Avg
Client/Plant Name		FDS 11				
Job No.		FDS 11				
Sampling Location		FDS 11				
Run ID #		FDS 11				
,,,,,,						
Test Date		FDS 11				
Run Start Time	•	FDS 11				
Run Finish Time		FDS 11				
Net Traverse Points		FDS 1				
Traverse Matrix (if rectangular)		FDS 1				
Net Run Time, min	. θ	FDS 11				
Barometric Pressure, mm Hg	Pb	FDS 11				
DGM Calibration Factor	Y	CDS 6				
DGM Temperature, °C	t _m	FDS 11				
DGM Sample Volume, L	V _m	FDS 11				
DGM Sample Volume, L	$V_{m(std)}$	SS 11				
<u>Sample</u>						
Normality, Standard Iodine	N _i	LDS 11				
Volume Titrated, 50 mL	V _{IT}	LDS 11				
Normality, Standard Thiosulfate	N _T	LDS 11				
Volume Titrant, mL	V _{TT}	LDS 11				
Blank						
Normality, Standard Iodine	N _I	LDS 11				
Volume Titrated, 50 mL	V _{IT}	LDS 11				
Normality, Standard Thiosulfate	N _T	LDS 11				
Volume Titrant, mL	V _{TT}	LDS 11				
H ₂ S Concentration, mg/dscm	C _{H2S}	SS 11				
Bush as Cally and a Cally	•••					
Post-test Calibration Checks		0000				
Temperature		CDS 2d				
Barometer		CDS 2d				
Metering System		CDS 6				

$$V_{m(std)} = 0.3858 \text{ Y } \frac{V_{m} P_{b}}{(273 + t_{m})}$$

$$C_{H_{2}S} = 17.04 \text{ x } 10^{3} \frac{[V_{IT} N_{t} - V_{TT} N_{T}]_{aample} - [V_{IT} N_{t} - V_{TT} N_{T}]_{blank}}{V_{m(std)}}$$

FIELD PROCEDURE 11 Hydrogen Sulfide of Fuel Gas Streams in Petroleum Refineries

A. Sampling Preparation

- 1. Assemble the sampling train as shown in Figure F11-1.
 - Place 15 mL of 3% H₂O₂ solution in the first impinger.
 - b. Leave the second impinger empty.
 - c. Place 15 mL of the CdSO₄ solution in the third, fourth, and fifth impingers.
 - d. Place the impinger assembly in an ice bath container, and place crushed ice around the impingers. Add more ice during the run, if needed.
- Optional: Leak-check the sampling train as follows:
 - Connect the rubber bulb and manometer to the first impinger, as shown in Figure F11-1. Close the petcock on the DGM outlet.
 - Pressurize the train to 10 in. H₂O with the bulb, and close off the tubing connected to the rubber bulb.
 - Time pressure drop (must be ≤0.4-in. drop in pressure in 1 min).

B. Sampling

- Purge the connecting line between the sampling valve and the first impinger as follows:
 - Disconnect the line from the first impinger, and open the sampling valve.

- b. Allow process gas to flow through the line for 1 to 2 min. Close the sampling valve, and reconnect the line to the impinger train.
- 2. Open the petcock on the dry gas meter (DGM) outlet. Record the initial DGM reading and the barometric pressure.
- Open the sampling valve, and then adjust the valve to obtain about 1 L/min. Maintain a constant (±10%) flow rate during the test.
- Sample for at least 10 min. Take DGM and temperature readings at least every 5 min.
- At the end of the sampling time, close the sampling valve, and record the final DGM volume and temperature readings.
- 6. Mandatory: Leak-check the train (see A2).
- Disconnect the impinger train from the sampling line, and connect the charcoal tube and the pump, as shown in Figure F11-1.
- 8. Purge the train at 1 L/min with clean ambient air for 15 min.
- After purging, cap the open ends, and remove the impinger train to a clean, welllighted area that is away from sources of heat or direct sunlight.

C. Sample Recovery

Because analysis must immediately follow sample recovery, see LP 11 for sample recovery.

Figure F11-1. H₂S Sampling train.

9/30/94: FD11-1

FIELD DATA SHEET 11 Hydrogen Sulfide

Client/Pla	ant Name				Job #			
City/Star	te				Date/Time			
Test Loc	ation/Run #			Personn	el			
Train ID#	#/Sample Box #	!	DG	iM Cal Coef.,	Υ	Ambient Te	mp., °C	
Start Time End Time			·		Bar. Pressu	. Pressure, P _b mm Hg		
Trav.	Samplg	201121	Rotameter Rdg (cc/min)	Temperature (°C)		Flow Rat	e Deviation	
Pt.	time (min)	DGM Rdg (L)		DGM	Imp. Exit	ΔV _m	$\Delta V_{m}/\Delta \overline{V}_{m}$	
						· · · · · · · · · · · · · · · · · · ·		
						· .		
	T-4-1 T						0.00 4.00	
	Total Time, θ_s	Volume, V _m	Avg	Avg, t _m	Max ≤20°C?	Avg	0.90 - 1.10?	
	Leak-	checks ≤0.4 in.	H ₂ O/min		Purge Rate	Purge T	ime min	
Run #								
Pre (op	tional) (in./m	nin)		<u> </u>	$V_{m(std)} = 0$	0.3858 V _m Y -	P _b	
	nandatory)(in./m		-		, ,		(2/3 + (_m)	
Pressur	re (in. H	20)	<u> </u>					
	et Calibrations: h CDS 2d and (CDS 6 for temper	ature (≤ ±5.4°F	F), barometer,	and metering syst	em calibration	n checks.	
							·	
<i>QA/QC (</i> Complete		Legibility	Accurac	γ \$	Specifications	_ Reaso	onableness	
Checked	by:	Personnel (Sig	nature/Date)		Team Leade	er /Signature/I	Datel	

LABORATORY PROCEDURE 11 Hydrogen Sulfide

A. Sample Recovery

- 1. Discard the contents of the H_2O_2 impinger.
- Carefully transfer the contents of the third, fourth, and fifth impingers into a 500-mL iodine flask. Rinse with water the impingers and connecting glassware and quantitatively transfer the rinse into the iodine flask.
- 3. For a blank, add 45 mL CdSO₄ absorbing solution to an iodine flask.
- Pipette exactly 50 mL 0.01 N I₂ solution into a 125-mL Erlenmeyer flask. Add 10 mL 3 M HCl to the solution.

Note: If Antifoam B was not used or if significant quantities of yellow CdS remain in the impingers, go to step B6 (alternative).

- Quantitatively transfer the acidified I₂ into each iodine flask. Stopper the flask immediately, and shake briefly.
- 6. Alternative: Use the acidified I₂ solution (step B4) to extract any remaining CdS from the third, fourth, and fifth impingers and connecting glassware as follows:
 - a. Immediately after pouring the acidified I₂ into an impinger, stopper it and shake for a few moments, then transfer the liquid directly to the iodine flask. Do not transfer any rinse portion from one impinger to another. Once the acidified I₂ solution has been poured into any glassware containing CdS, stopper the container at all times except when adding more solution, and do this as quickly and carefully as possible.
 - b. After adding any acidified I₂ solution to the iodine flask, allow a few minutes for absorption of the H₂S before adding any further rinses.
 - Repeat the I₂ extraction until any visible
 CdS is removed from the impingers.
 - d. Quantitatively rinse all the l₂ from the impingers, connectors, and the beaker into the iodine flask using water. Stopper the flask and shake briefly.
- Allow the iodine flask to stand about 30 min in the dark for absorption of the H₂S into the I₂.
- 8. Analyze the samples and blank immediately.
- Recalibrate the metering system and temperature gauges (see FP 2d and CP 6).

B. Reagent Preparation

- CdSO₄ Absorbing Solution. Dissolve 41 g 3CdSO₄·8H₂O and 15 mL 0.1 M H₂SO₄ in a 1-L volumetric flask containing about 0.75 L water. Dilute to volume with water. Mix thoroughly. The pH should be 3 ± 0.1. (Optional: Add 10 drops Dow-Corning Antifoam B.) Shake well before use. Do not use after 1 month.
- 2. H₂O₂, 3%. Dilute 30% H₂O₂ 1:9 by volume, as needed. Prepare fresh daily.
 - Hydrochloric Acid Solution, 3 M. Add 240 mL conc. HCl (s.g. 1.19) to 500 mL water in a 1-L volumetric flask. Dilute to 1 L with water. Mix thoroughly.
- 4. Iodine Solution, O.1 N. Dissolve 24 g KI in 30 mL water. Add 12.7 g resublimed I₂ to the KI solution. Shake the mixture until the I₂ is completely dissolved. If possible, let the solution stand overnight in the dark. Slowly dilute the solution to 1 L with water, with swirling. Filter the solution if it is cloudy. Store solution in a brown-glass reagent bottle.
- Standard I₂ Solution, 0.01 N. Pipette 100.0 mL 0.1 N iodine solution into a 1 L volumetric flask, and dilute to volume with water. Standardize daily. Protect this solution from light. Keep reagent bottles and flasks tightly stoppered.
- 6. Standard Sodium Thiosulfate Solution, 0.1 N. Dissolve 24.8 g sodium thiosulfate pentahydrate (Na₂S₂O₃·5H₂O) or 15.8 g anhydrous sodium thiosulfate (Na₂S₂O₃) in 1 L water, and add 0.01 g anhydrous sodium carbonate (Na₂CO₃) and 0.4 mL chloroform (CHCl₃) to stabilize. Mix thoroughly by shaking or by aerating with nitrogen for about 15 min, and store in a glassstoppered, reagent bottle.
- Standard Sodium Thiosulfate Solution,
 0.01 N. Pipette 50.0 mL the standard 0.1 N
 Na₂S₂O₃ solution into a volumetric flask, and dilute to 500 mL with water.
- Alternative to A7: Standard Phenylarsine
 Oxide Solution, 0.01 N. Dissolve 1.80 g
 C₆H₅AsO in 150 mL 0.3 N sodium
 hydroxide. After settling, decant 140 mL of
 this solution into 800 mL water. Bring the
 solution to pH 6-7 with 6 N HCl, and dilute
 to 1 L with water.

9/30/94: L11-2

9. Starch Indicator Solution. Suspend 10 g soluble starch in 100 mL water, and add 15 g KOH pellets. Stir until dissolved, dilute with 900 mL water, and let stand for 1 hr. Neutralize the alkali with conc. HCl, using an indicator paper similar to Alkacid test ribbon, then add 2 mL glacial acetic acid as a preservative.

C. 0.1 N Na₂S₂O₃ Reagent Standardizations

- Weigh and transfer 2 g dried potassium dichromate (K₂Cr₂O₇) to a 500-mL volumetric flask. Dissolve in water and dilute to exactly 500 mL.
- 2. In a 500-mL iodine flask, dissolve about 3 g KI in 45 mL water, then add 10 mL 3 M HCl solution. Pipette 50 mL dichromate solution into this mixture. Gently swirl the solution once, and allow it to stand in the dark for 5 min. Dilute the solution with 100 to 200 mL water, washing down the sides of the flask with part of the water. Titrate with 0.1 N Na₂S₂O₃ until the solution is light yellow.
- Add 4 mL starch indicator and continue titrating slowly to a green end point.
- Repeat titrations until replicate analyses agree within 0.05 mL, and average these values.
- Calculate the normality. Repeat each week, or after each test series, whichever time is shorter.

D. $0.01 \text{ N } C_6H_5\text{AsO}$ Standardization (if applicable)

- Weigh and transfer 2 g K₂Cr₂O₇ to a 500mL volumetric flask. Dissolve in water, and dilute to exactly 500 mL.
- 2. In a 500 mL iodine flask, dissolve approximately 0.3 g KI in 45 mL water; add 10 mL 3 M HCI. Pipette 5 mL dichromate solution into the iodine flask. Gently swirl the contents of the flask once allow to stand in the dark for 5 min. Dilute the solution with 100 to 200 mL water, washing down the sides of the flask with part of the water. Titrate with 0.01 N C₆H₅AsO until the solution is light yellow.
- Add 4 mL starch indicator, and continue titrating slowly to a green end point.

- Repeat titrations until replicate analyses agree within 0.05 mL, and average these values.
- Calculate the normality. Repeat each week or after each test series, whichever time is shorter.

E. 0.01 N I₂ Reagent Standardization

- Pipette 25 mL standard I₂ solution into a 125-mL Erlenmeyer flask. Add 2 mL 3 M HCl. Titrate rapidly with standard 0.01 N Na₂S₂O₃ solution or with 0.01 N C₆H₅AsO until the solution is light yellow, using gentle mixing.
- Add four drops starch indicator solution, and continue titrating slowly until the blue color just disappears.
- Repeat titrations until replicate values agree within 0.05 mL, then average these values.
- Calculate normality of the I₂ solution. Repeat daily.

F. Analysis

- Test starch indicator solution for decomposition by titrating with 0.01 N I₂ solution, 4 mL starch solution in 200 mL water that contains 1 g KI. If more than 4 drops of 0.01 N I₂ standard solution are required to obtain the blue color, prepare a fresh solution.
- Conduct titration analyses immediately after recovery to prevent loss of l₂ from the sample. Avoid direct sunlight. (See LDS 11).
- Rapidly titrate each sample with 0.01 N Na₂S₂O₃ solution (or 0.01 N C₆H₅AsO, if applicable), in an iodine flask, to a light yellow color.
- Add 4 mL starch indicator solution, and continue titrating slowly until the blue color just disappears.
- Titrate the blanks in the same manner as the samples.
- Run blanks each day until replicate values agree within 0.05 mL, and average them.

9/30/94: LD11-1

LABORATORY DATA SHEET 11 Hydrogen Sulfide

Client/Plant Name						Job #				
City/State _	···						Sampling Location	ı <u></u>		
Analyst				Da	te Analyze	ed	Time Analyzed	i		
			Sar	nple		Sample Titration				
Run No.	Run No.		V Aliqu		ctor, V/A	T ₁ (mL)	T ₂ (mL)	Avg, V _{TT} (mL)		
<u> </u>							:			
						- , · · · · · · · · · · · · · · · ·				
Blank #	1					, , <u>, , , , , , , , , , , , , , , , , </u>				
Blank #							· · · · · · · · · · · · · · · · · · ·			
								,		
No.	K ₂ Cr ₂ O ₇ , W (g)		Volume, V _s (mL)	Normalit N _S	у,	Aliquot, V _I (25 mL)	Volume, V _T (mL)	Normality, . N _l		
1	····						; ;			
2 Avg			 							
Titra		ne 30 m	hin 1 hr of sam			N _S = 2.039	$\frac{W}{V_s}$ $N_1 =$	$\frac{N_{T} V_{T}}{V_{I}}$		
All r	eplicate	titrations	s agree within	0.05 mL?		$N_{T} = 0.10$	N _s			
Star	ch indica	tor test	ed for decompo	sition?						
			igned to be use according to N		thiosulfat	e solution; if	standard phenylar	sine is used,		
A/QC Checompletenes		Leç	gibility	Accuracy		Specifications	s Reas	onableness		
hecked by:			el (Signature/D		<u> </u>		Leader (Signature			
		- CI 2011[]	er (Signature/D	arel		i eam	reanci (Siâligini	i Dalei		